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Nose-wheel landing gears can become laterally unstable during takeoff, taxiing, and landing, exhibiting divergent

coupled lateral flexural and torsional oscillations called shimmy. The system stability is governed by the gear and tire

dynamic characteristics, system nonlinearities, and vibratory modes of the vehicle, as well as by the degree of

coupling that exists between these modes. Ground unevenness can produce significant lateral excitation on the

landing gear and results in adversely impacting its lateral stability. To evaluate a nose-wheel landing gear system for

its stability and response, it is necessary tomodel system components to capture the contributions of the landing gear

structure, the tire, wheel configuration, system nonlinearities, and its interaction with the runway. This paper

examines the lateral response of linear and nonlinear simplified nose-wheel landing gear models to ground-induced

lateral excitation. Considering torsional free play as the source of nonlinearity and external excitation due to runway

roughness, modeling and analysis of nose-wheel landing gear shimmy is presented. The spatial variation of the

runway surface is modeled as a continuous profile, obtained as a combination of sinusoids to represent a randomlike

ground-induced excitation with the specified power spectral density. Time-domain simulation studies on the linear

landing gear system show that unacceptable levels of lateral accelerations may be caused even at subcritical

velocities. Studies on nonlinear nose-wheel landing gear systems bring out the fact that the free play can result in a

significant reduction of the critical shimmy velocity and the need for such simulations in the subcritical ranges of

velocities.

Nomenclature

C = coefficient of tire yaw
CS = structural lateral damping coefficient
CSh = equivalent viscous damping coefficient in torsion
C� = rotational damping coefficient in the direction of �
C� = tire lateral damping coefficient
C� = equivalent structural damping coefficient in torsion
C = torsional tire damping coefficient
C1 = tire time constant
FN = side force due to lateral flexibility of the tire
Fzex = vertical excitation at the wheel contact point due to

runway roughness
I = moment of inertia of the wheel-strut assembly about the

gear vertical axis
IP = polar moment of inertia of the wheel assembly
I� = moment of inertia of the wheel assembly about the fore

and aft axis (roll axis) at the wheel hub
KS = lateral stiffness of the landing gear
KZt = vertical stiffness of the tire
K� = roll stiffness coefficient (in the direction of �)
K� = lateral stiffness of the tire
K� = torsional stiffness of the landing gear
K = tire torsional stiffness
L = distance of axis of wheel rotation from the gear vertical

axis

Law = distance of the wheel plane of rotation from the gear
vertical axis

Lcg = distance of the center of gravity of the wheel-strut
assembly from the gear vertical axis

LG = geometric trail length
Mdw = roll moment due to dual-wheel configuration
Msw = roll moment due to single-wheel configuration
M� = moment in the wheel-roll direction
M�ex = tire yawing (cornering) moment due to tire twist
M� = torsional moment about the strut axis
m = mass of the wheel-strut assembly
N = landing gear vertical reaction
P = ground-profile power spectral density function
R = rolling radius of the wheel tire
t = dimensional time
V = aircraft forward-taxi velocity
VCr = critical shimmy velocity
Vts = tire contact point velocity (velocity of tire slip)
y = strut lateral deflection
Z = random ground profile expressed in time/spatial domain

in the vertical direction
� = wheel-roll degree of freedom about the fore–aft axis

through the trail arm
�ex = roll excitation due to runway roughness
� = attitude angle of the gear, positive wheel forward
� = tire-contact-patch centerline lateral deflection with

respect to the wheel center plane
�Zt = vertical tire deflection
�rc = ground roughness constant
� = torsional rotation about the strut vertical centerline
�fp = free play in the rotation of the wheel
�r = rolling friction coefficient
� = ground correlation constant
 = tire torsional deformation about the vertical axis
� = ratio of landing gear torsional frequency to structural

frequency, !�=!S
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! = spatial frequency
!Cr = critical shimmy frequency
!o = spatial cutoff frequency
!S = uncoupled landing gear lateral frequency,

p�KS=m�
!� = uncoupled landing gear torsional frequency,

p�K�=I�

I. Introduction

A IRCRAFT dynamics during taxiing, takeoff, and landing
involve participation of the landing gear, which plays a crucial

role in ensuring safety and comfort. Hence, the study of the dynamics
of the aircraft nose-wheel landing gear (NLG) for stability and
response is an important component of the design and certification
process of aircraft. NLG vibrations include brake-induced vibrations
and self-induced lateral oscillations referred to as shimmy. Shimmy
is a self-excited instability thatmay occur during takeoff, taxiing, and
landing, involving mainly three vibratory motions: lateral displace-
ment of the strut, rotation of the wheel assembly about the vertical
axis (yaw), and rotation about the fore and aft axis (roll). The basic
cause of shimmy is the energy transfer from the forward motion of
the aircraft to the lateral vibratory modes of the landing gear system
through the contact force between the tires and the ground. The
stability of the system depends on the dynamic characteristics of the
gear, tires, and vibratory modes of the vehicle as a whole, as well as
the degree of coupling that exists between various modes of these
components. Shimmymay be caused by a number of conditions such
as low torsional stiffness of the strut, free play in the gear, wheel
imbalance, or worn parts. Landing gears that shimmy are
unacceptable, and in fact, a severe occurrence of shimmy can
damage the landing gear and its attaching structure, resulting in
significant repair costs. At speeds close to critical (shimmy) velocity,
small motions may become unstable and grow, and in severe cases,
the pilot may not be able to take corrective action, leading to the
failure of the gear. It is therefore necessary that NLG designs ensure
adequate margins between the taxi speeds and the critical velocity of
shimmy under all operating conditions. Unlike the NLG, because the
main landing gear does not have the swivel degree of freedom and
associated low torsional rigidity, it does not have shimmy instability,
and its torsional response to lateral excitation is not significant
enough to influence the lateral dynamics of the aircraft taxiing on
ground.

To evaluate the landing gear system for its stability and response, it
is necessary to develop an adequately representative model,
integrating the various models of the system components, capturing
the contributions of the landing gear structure, the tire, wheel
configuration, steering mechanism, runway interaction, free play,
friction, and other system nonlinearities. There are studies [1–4] on
analytical models of the NLG system that examine the effects of
NLG geometry as well as landing gear structural and tire parameters.
Moreland [1] presented a description of a landing gear system having
strut deflection, swivel angle, tire deflections, linkage strains, and
airframe motion as degrees of freedom (DOF). His model accounts
for torsional and lateral rigidities of the strut, wheel moment of
inertia, weight of the strut, and tire elasticity. Walter and Howard [2]
presented an analytical model to study the effect of the geometry of
caster-system inertia distribution, considering a single-wheel
configuration. Krabacher [3,4] presented detailed mathematical
models with tire lateral deflection, tire twist, swivel angle, strut
deflection, and wheel tilt as DOF, taking into account structural
inertias and flexibilities.

Nonlinearities in the landing gear make the evaluation of the
shimmy phenomenon more complex and its prediction more
difficult. It is necessary to incorporate landing gear nonlinearities to
obtain accurate estimates of the critical velocity of shimmy.
Krabacher [3,4] analyzed landing gear models, accounting for
torsional free play and coulomb friction. He identified critical
nonlinear parameters in the models by examining the sensitivity of
these parameters to numerical variation. There have also been studies
onmodeling [5–8] and evaluation [9–13] of nonlinear models for the
analysis of nose-wheel shimmy. It has been observed that the linear
NLGmodel has a region of stable response, with the critical value of

the forward velocity as its upper boundary [9,10]. The nonlinear
NLG models, on the contrary, displayed a more complex behavior
with limit-cycle oscillations for some cases, over a range of velocity
values [11–13]. No external excitation was considered in these
studies. It would be interesting to examine whether the presence of
external excitation alters the stability characteristics and boundaries
of the nonlinear systems and how the limit-cycle amplitudes are
affected by the external excitation. Runway-induced excitation has
been an important subject of study in the dynamic response of
landing gears. Runway roughness will, in general, produce
longitudinal as well as lateral excitations. For linear NLG models,
runway-induced excitations available as power spectral density
(PSD) functions can directly be used to obtain the response spectrum.
However, for nonlinear NLG systems, the response needs to be
simulated in the time domain. For such studies, modeling of the
ground profile is an essential requirement for simulation of system
response.

In general, ground profiles are continuous and irregular. The
ground unevenness can be assumed as a homogeneous process with
zeromean and for which the frequency content can be represented by
a PSD function [14–16]. Because ground-profile variation does show
statistical regularity to an extent, it can be modeled as a stationary
Gaussian process. The spatial variation of the profile can be modeled
as a continuous profile, obtained as a combination of sinusoids to
represent a randomlike ground-induced excitation with the specified
power spectral density [15,16]. The nonhomogeneous ground profile
can be expressed as the sum of a variable mean and a zero mean
random unevenness, and response samples can be generated to form
an ensemble and can be processed to obtain the second-order
response statistics during landing and takeoff [14]. Characterization
of ground unevenness and generation of random ground profiles
have also been reported in the literature [14–19].

This paper examines the lateral response of linear and nonlinear
NLG models to ground-induced lateral excitation. Considering
torsional free play as a source of nonlinearity, modeling and analysis
of shimmy is presented. For prepared surfaces, the ground roughness
model described by a PSD function used in [14,15] is found suitable
to adequately represent the measured profile. In the current work, the
preceding model is used to generate randomlike ground profiles
using an algorithm based on superposition of sinusoids with random
phases [20].

II. Ground-Profile Modeling

For the simulation of the response of wheeled systems to ground
excitations, the ground profile as a function of spatial coordinates
along the travel path can be converted to functions of time for a given
forward velocity. Let the randomground profile be expressed asZ�x�
in the space domain, where x is the position along the path at time t.
This random profile [14,15] can be described to the second order by
the correlation and is given by

P�!� � �rc
!2��2 ! � !o

� 0 ! > !o
(1)

where! is the spatial frequency,!o is the cutoff frequency, �rc is the
roughness constant, and � is the correlation constant. The PSD
function given by Eq. (1) gives a simple representation of the random
ground profile in which the ground roughness is measured in vertical
direction. This expression can be used to generate a range of runway
profiles for roughness conditions from poor to good by an
appropriate choice of roughness and correlation constants. The
spectrum can be considered as a combination of an infinite number of
sinusoidal components of various power levels. Choosing the phase
values of these sinusoids randomly and superposing these sinusoids,
the ground spectrum can be converted to a spatial ground profile, as
shown in Fig. 1. Choosing the random phase ϕ of the sinusoid
between �� and �� with frequency ! chosen, the random ground
profile can be expressed in the space domain [16] as
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Z�x� �
X1
i�1
�
�������������������
P�!i� d!

p
� cos�2�!ix� �i� (2)

The ground profile thus generated in space is converted into a
function of time using the forward velocityV of the vehicle, which is
given by

Z�t� �
X1
i�1
�
�������������������
P�!i� d!

p
� cos�2�V!it� �i� (3)

Figure 2 shows typical ground-profile PSD for a rough-correlated
ground (�rc � 0:5 	 10�4 and �� 0:5). Runway profiles are
generated for different values of roughness and correlation constants
for a period of 15 s for the taxi run velocity, up to 80 m=s at an
interval for 1 m=s. The nature of profiles generated ranges from
smooth-correlated to rough-uncorrelated by choosing different
combinations of roughness and correlation constants. For typical
combinations of roughness and correlation constants, Figs. 3–6 show
smooth-correlated, smooth-uncorrelated, rough-correlated, and
rough-uncorrelated profiles, respectively, as functions of runway
length and as a function of time (V � 10 m=s). For the preceding
roughness and correlation constant combinations, Fig. 7 shows
runway excitation amplitudes as a function of time atV � 10 m=s to
the same scale. Here, 10 m=s represents a low-speed taxi run and the
value is chosen to demonstrate the profiles in time domain. For the
class of aircraft considered, the takeoff and landing velocities are
about 80 and 50 m=s, respectively.

III. Ground Excitation Modeling

After the generation of track/ground profile as a function of time,
the vertical excitation Fzex at the wheel contact point at time t can be
computed as

Fzex �
Nng

g
�Z�t� (4)

whereNng is the total nose load, which is usually taken as 10% of the
total aircraft weight. Let Zi and Zk, respectively, represent
amplitudes of the ith and kth random profiles at the same instant of
time, and let Sy represent distance between contact points of two tires
of NLG with the runway, then using the variation of Z in Sy units of
the horizontal coordinate in space, the moment excitation M�ex

generated about the x axis as a function of time at time t can be
computed using the equation

M�ex � K��ex (5)

where

�ex � tan�1
�
Zi�t� � Zk�t�

Sy

�
(6)

The expression for M�ex given by Eq. (5), along with Eq. (6),
provides the lateral excitation generated by the runway roughness on
the NLG.

Fig. 1 Random ground profile as a superposition of sinusoids with

random phases

Fig. 2 PSD of rough-correlated profile (�rc � 0:5 � 10�4 and �� 0:5)
at V � 20 m=s.

Fig. 3 Smooth-correlated runway profile.

Fig. 4 Smooth-uncorrelated runway profile.
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IV. Modeling NLG Lateral Dynamics
with Runway Excitation

The mathematical model of the simplified NLG for linear analysis
should account for the structural inertia, stiffness, and structural
damping, along with proper mathematical relationships describing
the force-deflection characteristics of the tire. Figure 8 shows a
typical NLG configuration [21] and a schematic representation of the
same as a cantilever support from the fuselage, with a rigid swiveling
member of length L attached to a nonswiveling structure. Here, L is
called the caster or trail of the NLGwheel, which is provided to have
enough moment arm to drive the steering using hydraulic steering
action. The landing gear flexibility may cause fore and aft motion,
lateral motion in the y direction, and vertical motion absorbed by the
oleopneumatic shock absorber. Landing gear may also rotate about
the fore and aft axis (x axis) because of lateral bending. The wheel is
free to swivel about the vertical axiswhen the steering is not engaged.
This degree of freedomhelpswith steering the aircraft. The dynamics
of symmetric NLG system consists of 1) uncoupled symmetric
longitudinal dynamics involving fore and aft and up and down
motions and rotation about the lateral axis (y axis) at the root and
2) uncoupled lateral dynamics, which involves lateral motion,
rotation about the fore and aft axis (x axis), swiveling of the wheel
assembly, and lateral and yaw deformations of the tire.

Consider a NLG model, as shown in Fig. 9, which has lateral
displacement of the wheel y, angular wheel motion (yaw) about the
vertical axis �, lateral deflection of the tire contact patch with respect
to wheel center plane �, roll of the wheel plane about the fore–aft
axis �, and twist of the tire contact patch with respect to the wheel
about the vertical axis  as DOF. The deformations of the tire are
indicated by the deflection� and angle of twist of the tire-contact-
patch axis relative to the wheel plane. Several theoretical models for
tire dynamics have been proposed and used in literature. The most
realistic and useful of these are Moreland’s point-contact model and
von Schlippe’s stretched-string model. In this study, mathematical
relationships describing the force-deflection characteristics of the tire
are based on the point-contact model. Thismodel ignores tire inertias

Fig. 5 Rough-correlated runway profile.

Fig. 6 Rough-uncorrelated runway profile.

Fig. 7 Runway excitation amplitudes at V � 10 m=s for smooth-

correlated to rough-uncorrelated profiles.

Fig. 8 Schematic of nose-wheel landing gear.

Fig. 9 Simplified nose-wheel landing gear model.
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associatedwith tire deformations and uses afirst-ordermodel for side
force FN and the tire yawing (cornering) moment M . This theory
accounts for the effect of side force on the yaw angle of the tire and a
time delay between the application of the side force and the steady-
state yaw. As the wheel rotates, when a side force is applied to the
tire, it deflects laterally by� and changes its orientation with respect
to the wheel plane by an angle  . This angle  is not developed
instantaneously on the application of the lateral forceFN , but there is
a time delay.Moreland [1] proposed a relationship betweenFN and 
to account for this delay in terms of a tire yaw coefficientC and a tire
yaw time constant C1, which is given by

CFN � C1
_ �  (7)

When there is a cornering moment M , tire twist  is produced
about the vertical axis of the strut because of its torsional flexibility.
Moreland [1] observed that the yaw angle  of the tire is also a
function of the side force FN produced by the deflection�. The side
force FN and the cornering momentM are given by

FN � K��� C�
_� (8)

M � K  � C _ (9)

The total normal velocity of the wheel due to the combined effects

of tire deformations is V � _�. The third source of normal velocity
exists when the wheel is trailing the pivot with a lateral deformation
y, an angle �, with the direction of forward velocity of the airplane.
When there is no tire slippagewith respect to the ground (i.e., the total
lateral velocity at the tire contact point due to the combined effects of
tire deformations), wheel yaw and strut lateral deformations is zero
and the total lateral deformation at the tire hub is absorbed by the tire
deformation. Assuming � to be small (sin �� �) , we have

_y� L _� � _�� V�� �  � � 0 (10)

This equation defines the kinematic condition when there is no
lateral tire slip (i.e.,Vts � 0) and couples the tire dynamics with NLG
strut dynamics. Let us consider a single-wheel NLG configuration as
shown in Fig. 10. When the rolling of the wheel plane about the fore
and aft axis is considered (Fig. 10a), because of ground reaction, the
normal force will act at a point slightly off with respect to the vertical
plane passing through the axle of the wheel. This produces amoment
M� in the roll direction about the fore and aft axis of the wheel and is
given by

M� ��N�R� ��� (11)

where N is the normal reaction of the ground and R is the rolling
radius of the tire. Because of the rotation of the tire about its axle
(caused by the forward motion of the wheel), the wheel will
experience a tangential friction force that will produce a moment in
the direction of wheel yaw equal to �rM�, where �r is the rolling
friction coefficient. When gear attitude angle � (measured positive
forward) is considered (see Fig. 10c) for the single-wheel
configuration, the rolling moments about the fore and aft axis and
yawing moment about the vertical axis are given by, respectively,

Msw�
�M� cos � � �rM� sin � (12)

Msw�
�M� sin � � �rM� cos � (13)

Taking into account the forces due to wheel roll, tire twist, gear
attitude angle, and wheel gyroscopic moments about the vertical and
fore and aft axes and assuming � to be small (cos �� 1 and sin �� �)
and that there is no lateral tire slippage with respect to the ground, the
equations of motion for the dynamics of the 5-DOF single-wheel
NLG model can be written as

m �y�mLcg
��� CS _y� KSy� FN � 0 (14)

I ���mLcg �y� �C� � CSh� _�� K�� � �V=R�IP _��Msw�

�M � FN�L� R sin �� � 0 (15)

I� ��� C� _�� K���Msw�
� �V=R�IP _�� FNR cos � � 0 (16)

CFN � �C1
_ �  � � 0 (17)

_y� �L� R sin �� _�� R _� � _�� V�� �  � � 0 (18)

In the preceding equations, R sin � is called the geometric trail of
the gear, and single and double dots over the quantities represent the
first and second derivatives with respect to time t. Now consider a
dual-wheel configuration, as shown in Fig. 11. In this case, it is
necessary to account for the effect of the normal and tangential forces
on the left and right wheels that act at a distanceLaw from the fore and
aft axis. This results in additional moment components in the yaw
and roll directions [22]. Assuming equal tire pressure in the tires (i.e.,
the value of vertical tire stiffnessKZt of the tire is the same) and zero
gear attitude angle �, the moment about the fore and aft axis
(opposing the direction of �) is given by

M� � N1�Law � �R� ���� � N2�Law � �R����� �M�1 �M�2

(19)

where

N1 �
N

2
� KZtLaw�; N2 �

N

2
� KZtLaw�;

M�1
� N�R� ���; M�2

� 2KZtL
2
aw�

(20)

Fig. 10 Single-wheel nose landing gear model.

Fig. 11 Nose-wheel landing gear model with dual-wheel and gear

attitude.
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Considering the effect of gear attitude angle �, the momentMdw�

about the axis of the strut andMdw�
about the fore and aft axis for the

dual-wheel configuration are given by

Mdw�
� �M�1

�M�2
� sin � � �r�M�1

�M�2
� cos �

Mdw�
� �M�1

�M�2
� cos � � �r�M�1

�M�2
� sin �

(21)

Accounting for the preceding dual-wheel model, Eqs. (15) and
(16) can be modified as

I ���mLcg �y� �C� � CSh� _�� K�� � �V=R�IP _��Mdw�

�M � FN�L� R sin �� � 0 (22)

I� ��� C� _�� K���Mdw�
� �V=R�IP _�� FNR cos � � 0 (23)

It is assumed that free play in torsion is the only source of
nonlinearity in the NLG; the free play is modeled as a nonlinear
relationship between the torsional momentM� and wheel rotation �
(expressed in terms of torsional stiffness K�) and free play in wheel
rotation �fp. This is given by

M� � 0 ��fp < � < �fp
M� � K��� � �fp� � > �fp
M� � K���� �fp� � < ��fp

(24)

Then the dynamic equations of motion for the 5-DOF nonlinear
dual-wheel nose gear model with gear attitude and wheel gyroscopic
forces accounting for runway excitation and torsional free play can
be written in matrix form as

KS 0 0 K� 0

0 0 �2KZtL2
aw � N0R��sin � � �r cos �� N0�sin � � �r cos �� � K��L� R sin �� K 

0 0 �2KZtL2
aw � N0R��cos � � �r sin �� � K� N0�cos � � �r sin �� � K�R cos � 0

0 0 0 �CK� 1

0 V 0 0 �V

2
66666664

3
77777775

8>>>>>>>><
>>>>>>>>:

y

�

�

�

�

9>>>>>>>>=
>>>>>>>>;

�

CS 0 0 C� 0

0 C� � CSh ��V=R�IP C��L� R sin �� C 

0 �V=R�IP C� C	R cos � 0

0 0 R �CC� C1

1 L� R sin � R �1 0

2
66666664

3
77777775

8>>>>>>>><
>>>>>>>>:

_y

_�

_�

_�

_�

9>>>>>>>>=
>>>>>>>>;
�

m mLCG 0 0 0

mLCG I 0 0 0

0 0 I� 0 0

0 0 0 0 0

0 0 0 0 0

2
66666664

3
77777775

8>>>>>>>><
>>>>>>>>:

�y

��

��

��

��

9>>>>>>>>=
>>>>>>>>;
��

8>>>>>>>><
>>>>>>>>:

0

M�

M�ex

0

0

9>>>>>>>>=
>>>>>>>>;

(25)

where N0 � N � Fzex, and Fzex and M�ex are given by Eqs. (4) and
(5), respectively. In the preceding equation, the nonhomogeneous
termM�ex represents themoment excitation produced in the direction
of � by the runway roughness, coupled with the nonlinear lateral
dynamics of NLG.

V. Results and Discussion

It can be seen from the literature [23–25] that for the dynamics of
nonlinear structural systems, the Newmark-
 and the Runge–Kutta
methods are the most widely used. The response of the NLGmodels
to ground-induced excitation is obtained by integrating the equations
of system dynamics using the Newmark-
 scheme. Responses are
obtained for linear and nonlinear systems in terms of the variation of
y, �, and � with time. Results are obtained for runway profiles of
different roughness and correlation coefficients. Forced-response
studies are carried out for the nonlinear NLG system with free play.

The results presented here correspond to the NLG parameters shown
in Table 1. The values of the roughness coefficient considered in the
present study cover a wide range from smooth to rough and cover
runway classes from poor to good.

A. Response Studies on Linear Systems

Fig. 12 shows time responses in terms of y, �, and � for typical
subcritical and postcritical velocities for the linear five DOF dual-
wheel NLG model for the case of a smooth-correlated surface
(�rc � 10�6 and �� 0:5). For this system, it can be seen from Fig. 13
that V � VCr � 280 kmph. Figure 13 also shows peak lateral
accelerations at various velocities for the linear system, with runway
excitation due to various runway conditions ranging from smooth-
correlated to rough-uncorrelated profiles. It is observed that
unacceptable levels of lateral accelerations may be caused by
roughness, even at subcritical velocities. Increased runway
roughness can thus effectively bring down the margin available
between the maximum taxi velocities and their limiting values.

B. Response Studies on Nonlinear Systems

Figure 14 shows forced responses in terms of y, �, and� for two
typical velocities for the nonlinear NLGmodel with free play for the
case in which �fp � 5 	 10�4 rad, �rc � 0:01 	 10�4, and �� 0:5.
Figure 15 shows the corresponding phase–plane plots in terms of y
and _y. Figure 16 shows a comparison of peak lateral accelerations at
various velocities for the linear model without free play and
nonlinear model with free play (�fp � 5 	 10�4 rad) for the cases in
which �� 0:5 and �rc � 0:01 	 10�4 (smooth) and 0:1 	 10�4

(moderately rough) and 0:5 	 10�4 (rough). Figure 17 shows steady-

state free-vibration responses in the absence of runway excitation
(�rc � �� 0), giving values of lateral acceleration at various
velocities for the NLG system with free play for the case in which
�fp � 5 	 10�4 rad. It can be seen from Fig. 17 that the NLG system
is dynamically stable up to a value of velocity (60 kmph), beyond
which limit-cycle oscillations are observed as significant lateral
accelerations. This response becomes unstable as the critical
divergence velocity (183 kmph) is approached. In the presence of
runway excitation, as shown by Fig. 16, the NLG system with free
play shows 1) small self-limiting oscillations in the dynamically
stable region, 2) large self-sustaining oscillations in the velocity
range between the onset of limit cycle and divergence, and
3) divergent response as the critical velocity is reached. It is seen
from the preceding results that free play by itself causes a very
significant reduction in the critical divergence velocity and that free
play and runway excitation in combination have a more adverse
effect.
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VI. Conclusions

Analytical formulation for the lateral dynamics of linear and
nonlinearNLGmodels and simulation of their time-domain response
to runway-induced excitation was presented. Using simulated
runway profiles obtained as a combination of randomly phased

sinusoids with specified spectral characteristics and considering a
dual-wheel configuration for the NLG, lateral excitation was
obtained as a rolling moment varying with time. Numerical studies
were carried out to bring out the effect of runway roughness and its
interaction with torsional free play. These results show that the
critical velocity for divergent response is lowered by runway
excitation and is dependent on the runway roughness. The results
also show that free play by itself causes a very significant reduction in
the critical divergence velocity and that free play and runway

Table 1 Values of NLG and runway parameters for baseline problem and their ranges

Baseline values of parameters

Strut inertia parameters m� 22 kg, N � 10 kN, and Icg � 0:198 kgm2

Strut geometric
parameters

L� 0:075 m, Lcg � 0:0675 m, R� 0:175 m, �fp � 0:0005 rad, and � � 0 deg

Strut stiffness
parameters

KS � 542:83 kN=m, �� 3, and K� � 400 kN=m

Strut damping
parameters

CS � 1%, C� � 2%, and CSh � 0

Tire parameters K� � 238:75 kN=m, C� � 205 Ns=m, K � 665 Nm=rad, C � 0:7 Nms=rad, C1 � 0:0010886 s, C� 2:356 	 10�5 rad=N, and
KZt � 250 kN=m

Runway parameters �r � 0:02, �rc � 0:01 	 10�4 and �� 0:5
Range of values of parameters

Forward velocity V � 0–300 kmph
Runway parameters �rc � 0:01 	 10–4 	 0:5 	 10�4 and �� 0:1–0:5

Fig. 12 Time responses in terms of y, �, and � before and after the

onset of shimmy for the linear 5-DOF dual-wheel NLG model with

runway excitation for the case �rc � 0:01 � 10�4 and �� 0:5 at a) V �
270 kmph and b) V � 288 kmph.

Fig. 13 Peak lateral accelerations at various velocities for the linear 5-
DOF dual-wheel NLGmodel with runway excitation for the case �� 0:5
and �rc � 0:01 � 10�4–0:5 � 10�4.

Fig. 14 Time responses in terms of y, �, and� for the nonlinear 5-DOF

dual-wheel NLG model with runway excitation and free play at V � 54

and 101 kmph for the case �fp � 5 � 10�4 rad, �rc � 0:01 � 10�4, and

�� 0:5.

Fig. 15 Phase–plane plots of y for the nonlinear NLG model with

runway excitation at V � 54 and 101 kmph for the case

�fp � 5 � 10�4 rad, �rc � 0:01 � 10�4, and �� 0:5.
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excitation in combination have a more adverse effect. The preceding
studies bring out the need for such simulations in estimating the
operational ranges of aircraft velocities during ground roll.
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Fig. 16 Comparison of peak lateral accelerations at various velocities

for the linear model without free play and nonlinear model with a free

play (�fp � 5 � 10�4 rad) for the case �� 0:5 and �rc � 0:01 � 10�4

(smooth), 0:1 � 10�4 (moderately rough) and 0:5 � 10�4 (rough).

Fig. 17 Steady-state amplitude values of lateral acceleration at various

velocities for the NLG system without runway excitation for the case

�fp � 5 � 10�4 rad (VCr � 183 kmph).
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